Новый бюллетень Главного ботанического сада

Preview

New Bulletin of the Main Botanical Garden

Advanced search

Agricultural transformation of landscapes in the mixed forest zone of European Russia: periods identified from pollen diagrams

https://doi.org/10.35102/CBG.2025.46.40.003

Abstract

The article discusses nine pollen sequences and their summary diagrams from the Pskov, Smolensk, Tver, and Moscow regions of European Russia, within the mixed (broadleaved-coniferous) forests zone. The sequences are aligned on a unified timescale extending to 5,000 cal yr BP. Selected anthropogenic indicators (AI), including non-arboreal pollen (NAP), Cerealia, Artemisia, and Urtica, were correlated with major primary forest taxa (Picea, Quercus, Ulmus) using this common chronology. A relatively consistent pattern of stepwise agricultural development and human impact within the broadleavedconiferous forest zone is preliminarily established. Within this pattern, five more or less distinct phases of human-induced vegetation and landscape change are identified: 1) The conventional period attributed to the Neolithic–Bronze Age, from approximately 4,500–4,000 (extending to 3,000) cal yr BP, with earlier but doubtful evidences of agriculture (up to 6,000 cal yr BP). During this phase, the AIs reflect a "Forest Neolithic" type of economy, characterized by minimal deforestation and debatable cereal cultivation; 2) The Early Iron Age period, dating to (3,000) 2,800–2,500 cal yr BP; 3) The Migration Period, 1,700– 1,300 cal yr BP; 4) The Early Medieval period including the Viking Age and Old Russian period (1,400– 800 cal yr BP), featuring a pronounced increase in cultivation and rapid changes in forest composition; 5) The Period of New Times (400–100 cal yr BP), during which most diagrams show peak values for anthropogenic indicators, as well as maximum deforestation. 

About the Authors

M. B. Nosova
Tsitsin Main Botanical Garden of the Russian Academy of Sciences
Russian Federation

Moscow



E. G. Ershova
Department of Botany, University of Wisconsin-Madison
United States


N. A. Krenke
Institute for the history of material culture of Russian Academy of Sciences
Russian Federation

Saint Petersburg



N. G. Lavrenov
Tsitsin Main Botanical Garden of the Russian Academy of Sciences
Russian Federation

Moscow



References

1. Aleksandrovskii A.L., Ershova E.G., Ponomarenko E.V., Krenke N.A., Skripkin V.V. 2018. Natural and Anthropogenic Changes in the Soils and Environment of the Moskva River Floodplain in the Holocene: Pedogenic, Palynological, and Anthracological Evidences. Eurasian Soil Science. 51: 613–627. https://doi.org/10.1134/S1064229318060029

2. Alenius T., Gerasimov D., Sapelko T., Ludikova A., Kuznetsov D., Golyeva A., Nordqvist K.. 2020. Humanenvironment interaction during the Holocene along the shoreline of the Ancient Lake Ladoga: A case study based on palaeoecological and archaeological material from the Karelian Isthmus, Russia. The Holocene. 30(11): 1622–1636. https://doi.org/10.1177/0959683620941071

3. Archaeology. 2006. (V.L. Yanin, ed.) Moscow: MSU. 608 p. (in Russian)

4. Berglund B.E. 2003. Human impact and climate changes—synchronous events and a causal link? Quaternary International. 105(1): 7–12. https://doi.org/10.1016/S1040-6182(02)00144-1

5. Dimbelby G.W. 1961. Soil pollen analysis. Soil science. 12(1): 3–11.

6. Ershova E.G., Alexandrovskiy A.L., Krenke N.A. 2014. Paleosols, paleovegetation and Neolithic occupation of the Moskva River floodplain, Central Russia. Quaternary International. 324: 134–145. https://doi.org/10.1016/j.quaint.2014.01.031

7. Ershova E.G., Alexandrovskiy A.L., Krenke N.A., Korkishko D.V. 2016. New pollen data from paleosols in the Moskva River floodplain (Nikolina Gora): Natural and anthropogenic environmental changes during the Holocene. Quaternary International. 420: 294–305. https://doi.org/10.1016/j.quaint.2015.10.086

8. Ershova E.G., Krenke N.A., Kittel P., Lavrenov N.G. 2020. Archaeological sites in the Katynka river basin (Smolensk Region): Paleogeographic study. IOP Conference Series: Earth and Environmental Science. 438: 012007. http://dx.doi.org/10.1088/1755-1315/438/1/012007

9. Fyfe R.M., Woodbridge J., Roberts N. 2015. From forest to farmland: pollen‐inferred land cover change across Europe using the pseudobiomization approach. Global Change Biology. 21(3): 1197–1212. https://doi.org/10.1111/gcb.12776

10. Githumbi E., Fyfe R., Gaillard M.J., Trondman A.K., Mazier F., Nielsen A.B. et al. 2021. European pollen-based REVEALS land-cover reconstructions for the Holocene: methodology, mapping and potentials. Earth System Science Data. 14(4): 1581–1619. https://doi.org/10.5194/essd-2021-269

11. Gribova S.A., Isachenko T.I., Lavrenko E.M. (eds.) 1980. The vegetation of the European part of USSR. Nauka, Leningrad. 429 p. (in Russian)

12. Juggins S. 2007. C2: Software for ecological and palaeoecological data analysis and visualisation (user guide version 1.5). Newcastle upon Tyne: Newcastle University. 77: 680.

13. Kalis A.J., Merkt J., Wunderlich J. 2003. Environmental changes during the Holocene climatic optimum in central Europe-human impact and natural causes. Quaternary Science Reviews. 22(1): 33–79. https://doi.org/10.1016/S0277-3791(02)00181-6

14. Kaniewski D., Van Campo E., Guiot J., Le Burel S., Otto T., Baeteman C. 2013. Environmental roots of the Late Bronze Age crisis. PLoS One. 8(8): e71004. https://doi.org/10.1371/journal.pone.0071004

15. Kottek M., Grieser J., Beck C., Rudolf B., Rubel F. 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift. 15(3): 259–263. https://doi.org/10.1127/0941-2948/2006/0130

16. Königsson L.K., Possnert G., Hammar T. 1997. Economical and cultural changes in the landscape development at Novgorod, Russia. Tor. 29: 353–382.

17. Krenke N.A. 2019. Antiquities of the Moscow River basin from the Neolith to Middle Ages. Svitok, MoscowSmolensk. 392 p. (in Russian)

18. Kuneš P., Svobodová-Svitavská H., Kolář J., Hajnalová M., Abraham V., Macek M., ... & Szabó P. 2015. The origin of grasslands in the temperate forest zone of east-central Europe: long-term legacy of climate and human impact. Quaternary Science Reviews. 116: 15–27. https://doi.org/10.1016/j.quascirev.2015.03.014

19. Lavrenov N.G. 2025. Late Holocene vegetation dynamics in the upper reaches of the Dnieper River basin. PhD Biol. Sci. diss. Moscow. 136 p. (in Russian).

20. Lavrenov N.G., Ershova E.G., Krenke N.A., Zhuravkova M.M. 2021. Landscapes of Smolensk region as a result of ancient anthropogenic activity. Povolzhskaya archaeologiya. 4(38): 235–246. (in Russian) https://doi.org/10.24852/pa2021.4.38.235.246

21. Lavrenov N., Ershova E., Pimenov V. 2024. 71. Mshary mire (source of the Dnieper River, western Russia). Grana, 63(2): 185–187. https://doi.org/10.1080/00173134.2024.2347651

22. Lechterbeck J., Edinborough K., Kerig T., Fyfe R., Roberts N., Shennan S. 2014. Is Neolithic land use correlated with demography? An evaluation of pollen-derived land cover and radiocarbon-inferred demographic change from Central Europe. The Holocene. 24(10): 1297–1307. https://doi.org/10.1177/0959683614540952

23. Mazei Y.A., Tsyganov A.N., Bobrovsky M.V., Mazei N.G., Kupriyanov D.A., Gałka M., ... Tiunov A.V. 2020. Peatland Development, Vegetation History, Climate Change and Human Activity in the Valdai Uplands (Central European Russia) during the Holocene: A Multi-Proxy Palaeoecological Study. Diversity. 12(12): 462. https://doi.org/10.3390/d12120462

24. Mazurkevich A.N., Korotkevich B.S., Dolukhanov P.M., Shukurov A.M., Arslanov Kh.A., Savel´eva L.A., Dzinoridze E.N., et al. 2009. Climate, subsistence and human movements in the Western Dvina – Lovat River Basins. Quaternary International. 203(1–2): 52–66. https://doi.org/10.1016/j.quaint.2008.04.023

25. Mazurkevich A.N., Zaitseva G.I., Kulkova M.A., Dolbunova E.V., Sementsov A.A., Rishko S.A. 2016. Chapter 2. Absolute chronology of Neolithic in Dnepr-Dvina region in the VII-III mill BC. In: Radiocarbon chronology of Neolith in East Europe in VII–III centuries BC. Svitok, Smolensk: 317–352. (in Russian)

26. Miagkaya A., Ershova E. 2020. A 10,000-year pollen and plant macrofossil record from the Losiny Ostrov National Park (Moscow, Russia). IOP Conference Series: Earth and Environmental Science. 438: 012018. http://dx.doi.org/10.1088/1755-1315/438/1/012018

27. Mikliaev A.M. 1995. Stone and Iron Age in the interfluve of the Western Dvina and Lovat’. St. Petersburg archaeological digest. 9: 7–39. (in Russian)

28. Moore P.D., Webb J.A., Collinson M.E. 1991. Pollen analysis. 2nd ed. Blackwell, Oxford.

29. Nosova M.B., Severova E.E., Volkova O.A. 2017. Anthropogenic influence on vegetation of Polistovo-Lovatskaya mire system: palynological data. Bulletin of Moscow Society of Naturalists. Biology Series. 122(4): 80–88. (in Russian)

30. Nosova M.B., Severova E.E., Volkova O.A. 2017а. A 6,500-year pollen record from the Polistovo-Lovatskaya Mire System (North-West European Russia). Vegetation dynamics and signs of human impact. Grana. 56(6): 410– 423. https://doi.org/10.1080/00173134.2016.1276210

31. Nosova M.B., Novenko E.Yu., Severova E.E., Volkova O.A. 2019. Vegetation and climate changes within and around the Polistovo-Lovatskaya mire system (Pskov Oblast, north-western Russia) during the past 10,500 years. Vegetation History and Archaeobotany. 28(2): 123–140. https://doi.org/10.1007/s00334-018-0693-8

32. Novenko E.Y. 2016. Vegetation and climate changes in the Central and Eastern Europe in the Late Pleistocene and Holocene at the interglacial and transitional stages of climatic macro-cycles. GEOS, Moscow. 228 p. (in Russian)

33. Novenko E.Y., Eremeeva A.P., Chepurnaya A.A. 2014. Reconstruction of Holocene vegetation, tree cover dynamics and human disturbances in central European Russia, using pollen and satellite data sets. Vegetation History and Archaeobotany. 23(2): 109–119. https://doi.org/10.1007/s00334-013-0418-y

34. Novenko E.Y., Tsyganov A.N., Mazei N.G., Kupriyanov D.A., Rudenko O.V., Bobrovsky M.V., ... Nizovtsev V.A. 2019. Palaeoecological evidence for climatic and human impacts on vegetation in the temperate deciduous forest zone of European Russia during the last 4200 years: A case study from the Kaluzhskiye Zaseki Nature Reserve. Quaternary International. 516: 58–69. https://doi.org/10.1016/j.quaint.2018.06.028

35. Novenko E.Y., Tsyganov A.N., Payne R.J., Mazei N.G., Volkova E.M., Chernyshov V.A., ... Mazei Y.A. 2018. Vegetation dynamics and fire history at the southern boundary of the forest vegetation zone in European Russia during the middle and late Holocene. The Holocene. 28(2): 308–322. https://doi.org/10.1177/0959683617721331

36. Novenko E.Y., Tsyganov A.N., Rudenko O.V., Volkova E.V., Zuyganova I.S., Babeshko K.V., et al. 2016. Mid-and late-Holocene vegetation history, climate and human impact in the forest-steppe ecotone of European Russia: new data and a regional synthesis. Biodiversity and Conservation. 25(12): 2453–2472. https://doi.org/10.1007/s10531-016-1051-8

37. Novenko E.Y., Tsyganov A.N., Volkova E.M., Babeshko K.V., Lavrentiev N.V., Payne R.J., Mazei Y.A. 2015. The Holocene paleoenvironmental history of central European Russia reconstructed from pollen, plant macrofossil, and testate amoeba analyses of the Klukva peatland, Tula region. Quaternary Research. 83(3): 459–468. https://doi.org/10.1016/j.yqres.2015.03.006

38. Novenko E.Y., Volkova E.M., Glasko M.P., Zuganova I.S. 2012. Palaeoecological evidence for the middle and late Holocene vegetation, climate and land use in the upper Don River basin (Russia). Vegetation History and Archaeobotany. 21(4–5): 337–352. https://doi.org/10.1007/s00334-011-0339-6

39. Novenko E.Yu., Volkova E.M., Nosova M.B., Zuganova I.S. 2009. Late Glacial and Holocene landscape dynamics in the southern taiga zone of East European Plain according to pollen and macrofossil records from the Central Forest State Reserve (Valdai Hills, Russia). Quaternary International. 207(1–2): 93–103. https://doi.org/10.1016/j.quaint.2008.12.006

40. Novenko E.Y., Zyuganova I.S., Volkova E.M., Dyuzhova K.V. 2019. A 7,000-year pollen and plant macrofossil record from the Mid-Russian Upland, European Russia: vegetation history and human impact. Quaternary International. 504: 70–79. https://doi.org/10.1016/j.quaint.2017.11.025

41. Oshibkina S.V. (ed.) 1996. Neolith of North Eurasia. Nauka, Moscow. 380 p. (in Russian)

42. Ponomarenko E.V., Ershova E.G., Krenke N.A., Bakumenko V.O. 2021. Traces of Iron Age slash-and-burn agriculture under the slavic kurgans at the MSU Zvenigorod Biological Station. Brief Communications of the Institute of Archaeology. 263: 60–73. (in Russian) https://doi.org/10.25681/IARAS.0130-2620.263.60-73

43. Poska A., Saarse L., Veski S. 2004. Reflections of pre-and early-agrarian human impact in the pollen diagrams of Estonia. Palaeogeography, Palaeoclimatology, Palaeoecology. 2009 (1–4): 37–50. https://doi.org/10.1016/j.palaeo.2003.12.024

44. Poska A., Saarse L. 2006. New evidence of possible crop introduction to north-eastern Europe during the Stone Age. Vegetation History and Archaeobotany. 15(3): 169–179. https://doi.org/10.1007/s00334-005-0024-8

45. Ramsey C.B. 2008. Deposition models for chronological records. Quaternary Science Reviews. 27(1–2): 42–60. https://doi.org/10.1016/j.quascirev.2007.01.019

46. Ramsey C.B., Lee S. 2013. Recent and planned developments of the program OxCal. Radiocarbon. 55(2–3): 720– 730. https://doi.org/10.1017/S0033822200057878

47. Reimer P.J., Austin W.E., Bard E., Bayliss A., Blackwell P.G., Ramsey C.B., Talamo S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon. 62(4): 725–757. https://doi.org/10.1017/qua.2020.42

48. Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Ramsey C.B., Van Der Plicht J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon. 55: 1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947

49. Safronova I.N., Yurkovskaya T.K., Mikliaeva I.M., Ogureeva G.N. 1999. Zones and types of zonation of vegetation of Russia and adjacent territories. Scale 1:8,000. Map: 2 sheets. The explanation and legend for the map. Geography Department MSU, Moscow. (in Russian)

50. Shumilovskikh L.S., Novenko E., Giesecke T. 2018. Long‐term dynamics of the East European forest‐steppe ecotone. Journal of Vegetation Science. 29(3): 416–426. https://doi.org/10.1111/jvs.12585

51. Spiridonova E.A., Aljoshinskaya A.S., Kochanova M.D. 2009. (The results of palynological investigations in the bottom-land of the Moscow River by the village RANIS). Archaeology of the Moscow Region. 4: 347–356. (in Russian)

52. Tarasov P.E., Savelieva L.A., Long T., Leipe C. 2019. Postglacial vegetation and climate history and traces of early human impact and agriculture in the present-day cool mixed forest zone of European Russia. Quaternary International. 51: 21–41. https://doi.org/10.1016/j.quaint.2018.02.029

53. Tarasov P.E., Savelieva L.A., Kobe F., Korotkevich B.S., Long T., Kostromina N.A., Leipe C. 2021. Lateglacial and Holocene changes in vegetation and human subsistence around Lake Zhizhitskoye, East European midlatitudes, derived from radiocarbon-dated pollen and archaeological records. Quaternary International. 623: 184–197. https://doi.org/10.1016/j.quaint.2021.06.027

54. Tilia 3.0.1 software. https://www.neotomadb.org/apps/tilia Accessed 09.09.2025

55. Ulanova N.G., Maslov A.A., Sinichkina D.S. 2011. Reforestation in the sixth year after the spruce dries up in the oxalis spruce forest. Proceedings of Zvenigorod biological station. 5: 152–157. (in Russian)

56. Vuorela I. 1975. Pollen analysis as a means of tracing settlement history in S.W. Finland. Acta Botanica Fennica. 104: 1–48.

57. Vuorela I. 1986. Palynological and historical evidence of slash-and-burn cultivation in South Finland. In: Antropogenic indicators in pollen diagrams. (Behre K.-E. ed.). Balkema, Rotterdam: 53–64.

58. Wacnik A. 2009. From foraging to farming in the Great Mazurian Lake District: palynological studies on Lake Miłkowskie sediments, northeast Poland. Vegetation History and Archaeobotany. 18: 187–203. https://doi.org/10.1007/s00334-008-0196-0

59. Wohlfarth B., Tarasov P., Bennike O., Lacourse T., Subetto D., Torssander P., Romanenko F. 2006. Late glacial and Holocene palaeoenvironmental changes in the Rostov-Yaroslavl’area, West Central Russia. Journal of Paleolimnology. 35(3): 543–569. https://doi.org/10.1007/s10933-005-3240-4

60. Woodbridge J., Fyfe R.M., Roberts N., Downey S., Edinborough K., Shennan S. 2014. The impact of the Neolithic agricultural transition in Britain: a comparison of pollen-based land-cover and archaeological 14C dateinferred population change. Journal of Archaeological Science. 51: 216–224. https://doi.org/10.1016/j.jas.2012.10.025

61. Zernitskaya V., Mikhailov N. 2009. Evidence of early farming in the Holocene pollen spectra of Belarus. Quaternary International. 203(1–2): 91–104. https://doi.org/10.1016/j.quaint.2008.04.014

62. Zernitskaya V.P., Novenko E.Yu., Stančikaitė M., Vlasov B.P. 2019. Environmental changes in the Late Glacial and Holocene in the southeast of Belarus. Doklady National Belarussian Academy of Sciences. 63(5): 584–596. (in Russian)


Review

For citations:


Nosova M.B., Ershova E.G., Krenke N.A., Lavrenov N.G. Agricultural transformation of landscapes in the mixed forest zone of European Russia: periods identified from pollen diagrams. New Bull. MBG. 2025;1(3-4):33-51. https://doi.org/10.35102/CBG.2025.46.40.003

Views: 55

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3033-7135 (Online)